How do I prove that:
$$\sin(1)+\sin(2)+\cdots+\sin(n)=\frac{\sin\left(\frac{n+1}2\right)\sin\left(\frac n2\right)}{\sin\left(\frac12\right)}?$$
I have tried to to use the formula $\sin(2x)=2\sin(x)\cos(x)$ but without any success.
How do I prove that:
$$\sin(1)+\sin(2)+\cdots+\sin(n)=\frac{\sin\left(\frac{n+1}2\right)\sin\left(\frac n2\right)}{\sin\left(\frac12\right)}?$$
I have tried to to use the formula $\sin(2x)=2\sin(x)\cos(x)$ but without any success.
Hint:
You can prove it by induction. Here's a sketch of the inductive step: \begin{align} \sin(1)&+\sin(2)+\dots+\sin(n)+\sin(n+1)=\frac{\sin(\frac{n+1}2)\sin\frac n 2}{\sin(\frac12)}+\sin(n+1)\\ &=\frac{\sin(\frac{n+1}2)\sin\frac n 2+\sin(n+1)\sin(\frac12)}{\sin(\frac12)}\\ &=\frac{\sin(\frac{n+1}2)\sin\frac n 2+2\sin(\frac{n+1}2)\cos(\frac{n+1}2)\sin(\frac12)}{\sin(\frac12)} \end{align} Now in the second term of the numerator, you can linearise the factor $\;2\sin(\frac12)\cos(\frac{n+1}2)$ with the formula $$2\sin a\cos b=\sin(a+b)+\sin(a-b).$$