Suppose $f$ and $g$ are functions from $\Bbb{R} → \Bbb{R}$. I wish to show that for any point $x_0 ∈ \Bbb{R}$, we have $D^+(f + g)(x_0) ≤ D^+f(x_0) + D^+g(x_0)$ where $D^+$ denotes the upper right-hand Dini derivative. So I tried to start with
$$ \limsup_{h \to 0^+} \frac{(f+g)(x_0 + h) - (f+g)(x_0)}{h}≤\limsup_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}+\limsup_{h \to 0^+} \frac{g(x_0 + h) - g(x_0)}{h} $$
but I am not sure how to proceed.