One method is to use differentiation and
$$\int_{0}^{\infty} \frac{x^{\alpha} \, dx}{x-1} = \pi \csc(\pi (\alpha + 1)) \, (-1)^{\alpha}.$$
Let $I(\beta)$ be
$$I(\beta) = \int_{0}^{\infty} \frac{e^{-\beta x} \, x^{\alpha} \, dx}{x-1}$$
which leads to
\begin{align}
- I' - I &= \int_{0}^{\infty} e^{-\beta x} \, x^{\alpha} \, dx \\
&= \frac{\Gamma(\alpha + 1)}{\beta^{\alpha + 1}}.
\end{align}
The solution of $$I' + I = - \frac{\Gamma(\alpha + 1)}{\beta^{\alpha + 1}}$$
is $$I(\beta) = c_{1} \, e^{-\beta} + (-1)^{\alpha} \, \Gamma(\alpha + 1) \, e^{-\beta} \, \Gamma(-\alpha, - \beta)$$
The difficulty in this solution is that if $\beta = 0$ then to be a finite solution $R(\alpha) < 0$ must be stated. Other conditions may apply. Continuing without concern of ranges the case would be
$$I(0) = \pi \csc(\pi (\alpha + 1)) \, (-1)^{\alpha} = c_{1} + (-1)^{\alpha} \, \Gamma(\alpha + 1) \, \Gamma(-\alpha, 0)$$
and
$$I(\beta) = (-1)^{\alpha} \, e^{- \beta} \, \left[ \pi \csc(\pi (\alpha + 1)) + \Gamma(\alpha + 1) \, (\Gamma(-\alpha, - \beta) - \Gamma(-\alpha, 0)) \right],$$
where $Re(\alpha) < 0$ and other conditions may apply.