If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $f(0)=f(1)$, then there exists $ x\in [0,1]$ such that $f(x) = f(x+\frac{1}{n})$, where $n$ is any natural number.
Let $g(x)=f(x+\frac{1}{n})-f(x)$ on $[0,1-\frac{1}{n}]$. Now, $f$ is continuous function on closed interval.So, it must attain its bounds. Let $m$ be minima at $c_1 \in [0,1]$ and $M$ be maxima at $c_2 \in [0,1]$.
Now if $c_1,c_2 \in [0,1-\frac{1}{n}]$, apply IVT to $g(x)$ on $[c_1,c_2]$. If $c_1$ or $c_2 \in [0,1-\frac{1}{n}]$, apply IVT to $[c_1,c_1-\frac{1}{n}]$ or $[c_2,c_2-\frac{1}{n}]$ respectively. If $c_1,c_2$ both do not belong to $[0,1-\frac{1}{n}]$, then apply IVT to $g$ on $[c_1-\frac{1}{n},c_2-\frac{1}{n}]$.
Is this proof correct? Thanks.