We first prove that for any eigen-value $\alpha$ of a matrix $A\in M_n(\Bbb C)$ the algebraic multiplicity of $\alpha$ is not less than the geometric multiplicity of $\alpha$.
Let $\{x_1,x_2,...,x_k\}$ be a basis of $E=$eigen-space of $\alpha$ w.r.t. $A$. And $ \{x_1,....,x_k,x_{k+1},...,x_n\}$ an extension to a basis of $\Bbb C^n$ . Then $P:=[x_1:x_2:•••••:x_n]$ is non-singular and $P^{-1} AP=P^{-1}[Ax_1:Ax_2:•••••:Ax_n]=P^{-1}[\alpha x_1:•••••:\alpha x_k:Ax_{k+1}:•••••:Ax_n]$
Now $P^{-1}(\alpha x_j)=\alpha P^{-1}P_{*j}=\alpha e_j$ for $j=1,.....,k$.So $$P^{-1}AP=\begin{bmatrix}\alpha I_k&B\\0&C\end{bmatrix}$$ for some matrices $B,C$.
Hence characteristic poly. of $A$= characteristic poly. of $P^{-1}AP=(x-\alpha)^k \chi_C(x)$ where $\chi_C(x)$ is the characteristic polynomial of $C$. Therefore
$$geometric\ multiplicity\ of\ \alpha\
w.r.t.\ A:=dim(eigen\ space\ of\ \alpha\ w.r.t.\ A)≤ algebraic\ multiplicity\ of\ \alpha\ w.r.t.\ A$$
Now if we let algebraic multiplicity$=l$ then $l≥k$ so that $(x-\alpha)^k\ |\ (x-\alpha)^l$ and $(x-\alpha)^l\ |\ \chi_A(X)$ (definition of algebraic multiplicity). Hence $(x-\alpha)^k\ |\ \chi_A(X)$.
Now it is done for matrix but one can do it for a linear map $T:V\rightarrow V$ by considering it's matrix w.r.t. some fixed basis of $V$.