Context.
Let's denote by $\lambda$ Lebesgue's measure on $\mathbb R^4$. I have a subset of $\mathbb R^4$, let's call it $E$ of full Lebesgue measure. I have another set $F$, and I would like $E\cap F$ to be non-empty. The issue is that I don't have much information about $E$, so if by chance $\lambda(F)>0$, this would solve my problem.
The question.
Let's denote by $F$ the following set:
$$F:=\{(\xi_1,\xi_2,\xi_3,\xi_4)\in\mathbb R^4,\ \xi_1\xi_4-\xi_2\xi_3\in\mathbb Q\}.$$
Do we have $\lambda(F)>0$ where $\lambda$ stands for Lebesgue's measure?
Remarks.
It seems to me that it could be possible that $\lambda(F)>0$, even if $F$ is not so big, since at least $F$ isn't countable. If I had to guess, I would say that $\lambda(F)=0$, but I am not able to prove it, which gives me hope that the opposite is true.