1

Trying to prove $$\{14a + 29b : a, b \in \mathbb{Z}\} = \mathbb{Z}$$ The statement $\{14a + 29b : a, b \in \mathbb{Z}\} \subseteq \mathbb{Z}$ is trivial, but the other way eludes me. Any hints on how to think about this question? How to get started?

Jacopo Stifani
  • 706
  • 4
  • 19

1 Answers1

2

Hint $\ 14a + (2\cdot 14\! +\! 1)\,b\, =\, 14(a\!+\!2b)+b.\,$ We can make it $\color{#c00}{=1} $ for $\,\color{#c00}{b=1}\,$ and $ \overbrace{a\!+\!2b = 0}^{\large a\ =\ -2b\ =\ -2}$

Hence $\,14(-2)+29(1) =\color{#c00} 1,\,$ and scaling this by $\,n\,$ shows how to obtain any integer that way.

Remark $\ $ The same works for $\,n\cdot a + (kn\!+\!1) b,\ $ i.e. $\ n(-k) + (kn\!+\!1)\cdot 1\, =\, 1$

It's the special case of the extended Euclidean algorithm for the GCD where it terminates in $1$ step, i.e. $\ \gcd(14,29) = \gcd(14,\color{#c00}1) = \color{#c00}1\ $ by $\ 29\bmod 14 \,=\, \color{#c00}1$

Bill Dubuque
  • 272,048