When am I allowed to do this:
$$\sum_{n=1}^{\infty} f_n + g_n = \sum_{n=1}^{\infty} f_n + \sum_{n=1}^{\infty} g_n $$?
I know I can do it if both $\sum_{n=1}^{\infty} f_n$ and $\sum_{n=1}^{\infty} g_n$ are convergent, but can I do it if one of them is divergent and the other convergent?