I have a homework with this equation: $$(x+2y)dx + ydy = 0$$
However I have no idea how to solve it. I tried couple things:
- Is it linear equation, or does it have "standard form" : $\frac{dy}{dx}+\frac{x}{y} + 2 = 0$. Well $\frac{1}{y}$ is not a standard form.
- Is it exact? $\frac{∂M}{∂y}=2$ and $\frac{∂N}{∂x}=0$. I tried using $\mu(y)=e^{\int\frac{2}{y}dy}=y^2$ to make it exact, but that didn't work
- Is it homogeneous? In theory yes as $M(tx,ty)=tx+2ty=t(x+2y)=tM()$ and $N(tx,ty)=ty=tN()$ and I reached up to $$x(dx)+2ux(dx)+u^2x(dx)+x^2u(du)=0$$ But I can't separate it.
Tried searching online and going with subsitution (method #3) was suggested, but they never went beyond that point. Maybe it's just too late and I'm not thinking straight.
If you could point me in the right direction, or list steps instead of giving solution if would be great.