$a \equiv b \pmod m$ means $a = b+vm$ for some integer $v$.
So $a^k = (b + vm)^k = \sum_{j=0}^k {k\choose j}(vm)^jb^{k-j}$ by the binomial theorem.
The trick is that for each $j \ge 1$ that ${k\choose j}(vm)^jb^j$ is a multiple of $m$.
So $(b + v*m)^k = b^k + \sum_{j=1}^k {k\choose j}(vm)^jb^{k-j}\equiv b^k \pmod m$
So $a^k = (b + v*m)^k \equiv b^k \pmod m$
(If you really care $a^k = b^k + m*K$ where $K = \sum_{j=1}^k {k\choose j}v^jm^{j-1}b^{k-j}$. )
.....
Actually I find it easier to just do the product rule.
If $a \equiv c\pmod m$ and $b \equiv d\pmod m$ then $ab \equiv cd \pmod m$. Because there are integers $k,j$ so that $a = c + km$ and $b = d + jm$.
So $ab = cd + cjm + dkm + jkm^2 = cd + m(cj + dk + jkm)$.
So $ab \equiv cd \pmod m$.
So by induction we know that if $a \equiv b \pmod m$ then $a^2 = a\cdot a \equiv b\cdot b\pmod m = b^2$ and via induction $a^k = a^{k-1}\cdot a \equiv b^{k-1}\cdot b \pmod k= b^k$