Convergence of $$P=\prod_{k=1}^{\infty}\left(1+\frac{1}{5^k}\right) $$
Will this product converges to finite limit?
My try:
we have $$P=1+\frac{1}{5}+\frac{1}{5^2}+2\frac{1}{5^3}+\cdots+2\frac{1}{5^7}+\cdots\infty$$
Convergence of $$P=\prod_{k=1}^{\infty}\left(1+\frac{1}{5^k}\right) $$
Will this product converges to finite limit?
My try:
we have $$P=1+\frac{1}{5}+\frac{1}{5^2}+2\frac{1}{5^3}+\cdots+2\frac{1}{5^7}+\cdots\infty$$
Using $\ln x\leq x-1$,
$$\ln P=\sum_{k=1}^\infty\ln\left(1+\frac1{5^k}\right)\leq\sum_{k=1}^\infty\left(1+\frac1{5^k}-1\right)=\frac14$$
As $\ln P\approx 0.23$, the bound is quite tight.
Not recommended, but invoking Bertrand's postulate allows one to avoid taking logs:
$$1+5^{-k}\lt{1\over1-5^{-k}}\lt{1\over1-2^{-2k}}\lt{1\over1-p_k^{-2}}$$
so
$$\prod_{k=1}^\infty(1+5^{-k})\lt\prod_p{1\over1-p^{-2}}=\zeta(2)=\sum_{n=1}^\infty{1\over n^2}\lt\infty$$