Beside the possibility of using the subsitution $x=e^{-u}$ together with the properties of geometric series the integral can be evaluated by finding the anti-derivative directly in terms of the dilogarithm which is defined as
$$\operatorname{Li}_2(x)=\sum_{k=1}^{\infty}\frac{x^k}{k^2}\text{ and therefore respectively }\frac d{dx}\operatorname{Li}_2(x)=-\frac{\ln(1-x)}{x}$$
so the anti-derivative of the given integral can be expressed as
$$\int \frac{\ln x}{1+x}dx=\operatorname{Li}_2(-x)+\ln(x)\ln(1+x)+c$$
Plugging in the borders of integration leads to
$$\int_0^1 \frac{\ln x}{1+x}dx = [\operatorname{Li}_2(-x)+\ln(x)\ln(1+x)]_0^1=\operatorname{Li}_2(-1)$$
the last term - $\operatorname{Li}_2(-1)$ - can be evaluated by using your given series. Since the series we examine converge absolutely the following steps are allowed
$$\begin{align}
\operatorname{Li}_2(-1)=\sum_{k=1}^{\infty}\frac{(-1)^k}{k^2}=-\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^2}&=-\left[\sum_{k=1}^{\infty}\frac1{k^2}-2\sum_{k=1}^{\infty}\frac1{(2k)^2}\right]\\
&=-\left[\sum_{k=1}^{\infty}\frac1{k^2}-\frac12\sum_{k=1}^{\infty}\frac1{k^2}\right]\\
&=-\left[\frac{\pi^2}6-\frac12\frac{\pi^2}6\right]\\
&=-\frac{\pi^2}{12}
\end{align}$$