We want to evaluate $$\lim_{x \to -8}\frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}.$$The solving process can be written as follows:\begin{align*}\lim_{x \to -8}\frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}&=\lim_{x \to -8}\left[\frac{(\sqrt{1-x}-3)(\sqrt{1-x}+3)}{(2+\sqrt[3]{x})(4-2\sqrt[3]{x}+\sqrt[3]{x^2})}\cdot \frac{4-2\sqrt[3]{x}+\sqrt[3]{x^2}}{\sqrt{1-x}+3}\right]\\&=\lim_{x \to -8}\left[\frac{-(x+8)}{x+8}\cdot \frac{4-2\sqrt[3]{x}+\sqrt[3]{x^2}}{\sqrt{1-x}+3}\right]\\&=-\lim_{x \to -8} \frac{4-2\sqrt[3]{x}+\sqrt[3]{x^2}}{\sqrt{1-x}+3}\\&=-2.\end{align*}
But when I input this
lim\frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}} as x to -8
into Wolfram|Alpha, it gives the limit $0$.
Why is Wolfram|Alpha making a mistake here?