Let us take the $\mathcal{F}$ presheaf of bounded real functions on the real line $\mathbb{R}$. Then for each $U\subset \mathbb{R}$ open we have
$$
U \mapsto \mathcal{F}(U) = \{ f\colon U \longrightarrow \mathbb{R} \mid \sup_U |f| < \infty \}
$$
It is clearly a presheaf. Now let's see the sheaf requirements.
Fix $U\subset \mathbb{R}$ and an open covering $U=\cup_i U_i$.
- For $s,t \in \mathcal{F}(U)$, we need that
$$
s|_{U_i} = t|_{U_i}, \forall i \Rightarrow s=t
$$
- For a family $\{s_i \in \mathcal{F}(U_i)\}$ we need that
$$
s_i|_{U_i\cap U_j} = s_j|_{U_i\cap U_j}, \forall i,j \Rightarrow \exists s \in \mathcal{F}(U) \mid s|_{U_i}= s_i
$$
It is not hard to see that 1. holds. Now for 2. take $U_i = (i-2,i+2)$ an open interval for each $i\in \mathbb{Z}$. We have $\mathbb{R} = \cup U_i$. Define
$$
s_i\colon U_i \longrightarrow \mathbb{R}, \, s_i(t) = t
$$
Then $\sup_{U_i} |s_i| = \max\{|i-2|,|i+2|\}$ and $s_i \in \mathcal{F}(U_i)$. Suppose that there exists $s\in\mathcal{F}(\mathbb{R})$ such that $s|_{U_i}= s_i$. Let $N \in \mathbb{Z}$ be such that $N> \sup_{\mathbb{R}} |s|$. Then we have an absurd since
$$
s(N) = s_N(N) = N > \sup_{\mathbb{R}} |s|.
$$