In $$I(n)=\int_{(n-1)\pi}^{n\pi}f(\tan x)dx,$$
put $y=x-(n-1)\pi,\implies dy=dx$
$$I(n)=\int_0^\pi f(\tan y)\ dy=I(1)$$
For integer $n\ge1,$
$$\implies\int_0^{n\pi}f(\tan x)\ dx=\sum_{r=0}^{n-1}\int_{r\pi}^{(r+1)\pi}f(\tan x)\ dx=n\int_0^{\pi}f(\tan x)\ dx$$
Now if $f(\tan x)=g(\tan^2x),$
$$\int_0^{\pi}f(\tan x)\ dx=\int_0^{\pi}g(\tan^2x)\ dx=\int_0^{\pi/2}g(\tan^2x)\ dx+\int_{\pi/2}^{\pi}g(\tan^2x)\ dx$$
Put $u=x-\pi$ in the last integral to find
$$\int_0^{\pi}f(\tan x)\ dx=\int_0^{\pi/2}g(\tan^2x)\ dx+\int_{-\pi/2}^0g(\tan^2x)\ dx$$
Now use Evaluate the integral $\int^{\frac{\pi}{2}}_0 \frac{\sin^3x}{\sin^3x+\cos^3x}\,\mathrm dx$. for both integrals if
both the integrals are of the form $$\int_a^b\dfrac{u(x)}{u(x)+g(a+b-x)}\ dx$$