For $\lambda>0$,
\begin{align}I(\lambda)=\int_0^{\infty}\frac{\ln ^2x}{x^2+\lambda x+\lambda ^2}\text{d}x\end{align}
Perform the change of variable $x=\lambda y$,
\begin{align}I(\lambda)&=\lambda\int_0^{\infty}\frac{\ln ^2 \left(\lambda y\right)}{\left(\lambda y\right)^2+\lambda^2y+\lambda ^2}\text{d}y\\
&=\frac{1}{\lambda}\int_0^{\infty}\frac{\ln ^2 \left(\lambda y\right)}{ y^2+y+1}\text{d}y\\
&=\frac{1}{\lambda}\int_0^{\infty}\frac{\ln ^2 \lambda }{ y^2+y+1}\text{d}y+\frac{1}{\lambda}\int_0^{\infty}\frac{\ln ^2 y}{ y^2+y+1}\text{d}y\\
&=\frac{\ln ^2 \lambda}{\lambda}\left[\frac{2}{\sqrt{3}}\arctan\left(\frac{2y+1}{\sqrt{3}}\right)\right]_0^\infty+\frac{1}{\lambda}\int_0^{\infty}\frac{\ln ^2 y}{ y^2+y+1}\text{d}y\\
&=\frac{\ln ^2 \lambda}{\lambda}\left(\frac{\pi}{\sqrt{3}}-\frac{\pi}{3\sqrt{3}}\right)+\frac{1}{\lambda}\int_0^{\infty}\frac{\ln ^2 y}{ y^2+y+1}\text{d}y\\
&=\frac{2\pi\ln ^2 \lambda}{3\lambda\sqrt{3}}+\frac{1}{\lambda}\int_0^{\infty}\frac{\ln ^2 y}{ y^2+y+1}\text{d}y\\
\end{align}
Consider,
\begin{align}L&=\int_0^\infty \frac{\ln^2 x}{x^2+x+1}\,dx\end{align}
\begin{align}M&=\int_0^\infty\int_0^\infty \frac{\ln^2(xy)}{(x^2+x+1)(y^2+y+1)}\,dx\,dy\\
&=2L\int_0^\infty \frac{\ln x}{x^2+x+1}\,dx\\
&=2L\left[\frac{2}{\sqrt{3}}\arctan\left(\frac{2x+1}{\sqrt{3}}\right)\right]_0^\infty\\
&=2L\left(\frac{\pi}{\sqrt{3}}-\frac{\pi}{3\sqrt{3}}\right)\\
&=\frac{4\pi}{3\sqrt{3}}L
\end{align}
On the other hand, perfom the change of variable $u=yx$,
\begin{align}M&=\int_0^\infty \int_0^\infty\frac{y\ln^2 u}{(u^2+uy+y^2)(y^2+y+1)}\,du\,dy\\
&=\int_0^\infty \left[\frac{(u+1)\ln\left(\frac{y^2+y+1}{y^2+uy+u^2}\right)}{2(u^3-1)}-\frac{\arctan\left(\frac{2y+u}{\sqrt{3}u}\right)+\arctan\left(\frac{2y+1}{\sqrt{3}}\right)}{\sqrt{3}(u^2+u+1)}\right]_{y=0}^{y=\infty}\ln^2 u\,du\\
&=-\frac{\pi}{\sqrt{3}}\int_0^\infty \frac{\ln^2 u}{u^2+u+1}\,du+\int_0^\infty\frac{(u+1)\ln^3 u}{u^3-1}\,du+\frac{\pi}{3\sqrt{3}}\int_0^\infty \frac{\ln^2 u}{u^2+u+1}\,du\\
&=\int_0^\infty\frac{(u+1)\ln^3 u}{u^3-1}\,du-\frac{2\pi}{3\sqrt{3}}\int_0^\infty \frac{\ln^2 u}{u^2+u+1}\,du\\
&=\int_0^\infty\frac{(u+1)\ln^3 u}{u^3-1}\,du-\frac{2\pi}{3\sqrt{3}}L
\end{align}
Therefore,
\begin{align}L&=\frac{\sqrt{3}}{2\pi}\int_0^\infty \frac{(u+1)\ln^3 u}{u^3-1}\,du\\
&=\frac{\sqrt{3}}{\pi}\int_0^1 \frac{(u+1)\ln^3 u}{u^3-1}\,du\\
&=\frac{\sqrt{3}}{\pi}\left(\int_0^1\frac{\ln^3 u}{u-1}\,du-\int_0^1\frac{u^2\ln^3 u}{u^3-1}\,du\right)\\
\end{align}
In the latter integral perform the change of variable $v=u^3$,
\begin{align}L&=\frac{\sqrt{3}}{\pi}\left(1-\frac{1}{3^4}\right)\int_0^1\frac{\ln^3 u}{u-1}\,du\\
&=\frac{80\sqrt{3}}{81\pi}\int_0^1\frac{\ln^3 u}{u-1}\,du\\
&=-\frac{80\sqrt{3}}{81\pi}\int_0^1 \left(\sum_{n=0}^\infty u^n\right)\ln^3 u\,du\\
&=-\frac{80\sqrt{3}}{81\pi}\sum_{n=0}^\infty\left(\int_0^1 u^n\ln^3 u\,du\right)\\
&=-\frac{80\sqrt{3}}{81\pi}\times -6\sum_{n=0}^\infty \frac{1}{(n+1)^4}\\
&=\frac{160\sqrt{3}}{27\pi}\zeta(4)
\end{align}
If you know that,
\begin{align}\zeta(4)=\frac{\pi^4}{90}\end{align}
Therefore,
\begin{align}L&=\frac{160\sqrt{3}}{27\pi}\times \frac{\pi^4}{90}\\
&=\boxed{\frac{16\sqrt{3}}{243}\pi^3}
\end{align}
Thus,
For $\lambda>0$,
\begin{align}\boxed{I(\lambda)=\frac{2\pi\ln ^2 \lambda}{3\lambda\sqrt{3}}+\frac{16\sqrt{3}}{243\lambda}\pi^3}\\\end{align}