Let $X\sim \text{Exponential}(\frac{1}{\lambda})$ and let $Y \sim \text{Exponential}(\frac{1}{\mu})$. Let $Z = X+Y$. I want to find the pdf of $Z$. I start by using the convolution $$f_Z(z) = \int_{-\infty}^{\infty} f_X(z-t)f_Y(t)dt$$
$$f_Z(z) = \int_{0}^{\infty} \frac{1}{\lambda}e^{-\frac{z-t}{\lambda}}\cdot \frac{1}{\mu}e^{-\frac{t}{\mu}}dt = \frac{e^{-\frac{z}{\lambda}}}{\lambda\mu}\int_{0}^{\infty}e^{t(\frac{1}{\lambda}-\frac{1}{\mu})}dt$$
But the final integral I have is undefined. I assume I have made an error somewhere. Any help is appreciated.