Evaluate $L=\lim_{n\rightarrow\infty}\sqrt[{n+1}]{(n+1)!}-\sqrt[n]{n!}$
How I approached it and where I get stuck:
$$\lim_{n\rightarrow\infty}\sqrt[{n+1}]{(n+1)!}-\sqrt[n]{n!}=\lim_{n\rightarrow\infty}\frac{\sqrt[n]{n!}}nn(\frac{\sqrt[{n+1}]{(n+1)!}}{\sqrt[n]{n!}}-1)$$
Now:
$$\lim_{n\rightarrow\infty}\frac{\sqrt[n]{n!}}n=\lim_{n\rightarrow\infty}\sqrt[n]{\frac{n!}{n^n}}=\lim_{n\rightarrow\infty}e^{\frac1n\sum_{k=1}^n\ln(\frac kn)}=e^{\int_0^1\ln(x)dx}=e^{-1}=\frac1e$$
So $L=\lim_{n\to\infty}\frac 1e\times n(\frac{\sqrt[{n+1}]{(n+1)!}}{\sqrt[n]{n!}}-1)$. Now this is where I get stuck. What should I do?
$$\lim_{n\to\infty}\frac{\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}}1=\lim_{n\to\infty}\frac{\sqrt[n]{n!}}n=\lim_{n\to\infty}\sqrt[n]{\frac{n!}{n^n}}$$
and by the root-to-ratio limit, we also have
$$\lim_{n\to\infty}\sqrt[n]{\frac{n!}{n^n}}=\lim_{n\to\infty}\frac{(n+1)!}{(n+1)^{n+1}}\times\frac{n^n}{n!}=\lim_{n\to\infty}\frac1{\left(1+\frac1n\right)^n}$$
$$\lim_{n\to\infty}\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}=\frac1e$$
– THIRUMAL 5688 Jul 12 '21 at 19:40