Let set $C$: $C \subset \mathbb{Z}^+$, and give $c \in \mathbb{Z}^+, c > 1$. if $\sum_{k \in C}\frac{1}{c^k}$ is an algebraic number, for other $p \in \mathbb{Z}^+, p > 1$, is the number $\sum_{k \in C}\frac{1}{p^k}$ an algebraic number too?
If $C$ is a finite set, it is obvious. And infinite set?