I have to prove the following proposition:
$$\sum_{i = 1}^{n} i\cdot 2^i = (n - 1) \cdot 2^{n + 1} + 2$$
I have the following proof thus far:
Proof by Induction
Basis Step $(n = 1)$
LHS: $\sum_{i = 1}^{n} i2^i = 1 \cdot 2^1 = 2$
RHS: $2^2(0) + 2 = 2$
LHS = RHS
Inductive Hypothesis
Assume that the proposition is true for $i = 1, 2, 3, \ldots, k$
Inductive Step $(n = k + 1)$
LHS: $\sum_{i = 1}^{k} i2^i + (k + 1) \cdot 2^{k + 1} = 1 \cdot 2^1 + 2 \cdot 2^2 + \ldots + k \cdot 2^k + (k + 1) \cdot 2^{k + 1}$
RHS: $(k - 1) \cdot 2^{k + 1} + 2 + (k + 1) \cdot 2^{k + 1}\\ = (k - 1) \cdot 2^{k + 1} + (k + 1) \cdot 2^{k + 1} + 2\\ = ((k - 1) + (k + 1)) \cdot 2^{k + 1} + 2\\ = (2k) \cdot 2^{k + 1} + 2$
LHS = RHS
QED
Am I correct? If not, am I headed in the right direction? I understand the basics of induction, but am continuing to apply it. Thank you!