$|\cos \theta + i\sin \theta - 1|\\
\sqrt {1 - 2\cos \theta} = 2\sin \frac {\theta}{2}\\
2\sin\theta = |e^{2\theta i} - 1|$
$\prod_\limits{n=1}^{m-1} \sin \frac{n\pi}{m} = \frac {1}{2^{m-1}}\prod_\limits{n=1}^{m-1}|e^{\frac{2n\pi}{m} i} - 1|$
The set $\{e^{\frac{2n\pi}{m} i}\}$ make up the roots of $z^m - 1 = 0$ excluding the root at $z= 1$ or the roots of $(z^{m-1} + z^{m-2} + z^{m-3} + \cdots + 1)$
$(z - e^{\frac{2\pi}{m}i})(z - e^{\frac{4\pi}{m}i})(z - e^{\frac{6\pi}{m}i})\cdots(z - e^{\frac{(m-2)\pi}{m}i})= (z^{m-1} + z^{m-2} + z^{m-3} + \cdots + 1)\\
|z - e^{\frac{2\pi}{m}i}||z - e^{\frac{4\pi}{m}i}||z - e^{\frac{6\pi}{m}i}|\cdots|z - e^{\frac{(m-2)\pi}{m}i}|= |z^{m-1} + z^{m-2} + z^{m-3} + \cdots + 1| $
and now set z = 1
$|1 - e^{\frac{2\pi}{m}i}||1 - e^{\frac{4\pi}{m}i}||1 - e^{\frac{6\pi}{m}i}|\cdots|1 - e^{\frac{(m-2)\pi}{m}i}| = |1^{m-1} + 1^{m-2} + 1^{m-3} + \cdots + 1| = m$
$\prod_\limits{n=1}^{m-1} \sin \frac{n\pi}{m} = \frac {1}{2^{m-1}}\prod_\limits{n=1}^{m-1}|e^{\frac{2n\pi}{m} i} - 1| = \frac {m}{2^{m-1}}$