6

Evaluate : $$\lim_{n\to \infty }\frac{n!}{{{n}^{n}}}\left( \sum\limits_{k=0}^{n}{\frac{{{n}^{k}}}{k!}-\sum\limits_{k=n+1}^{\infty }{\frac{{{n}^{k}}}{k!}}} \right)$$

gauss115
  • 2,241
  • 2
    Do you have any thoughts on the problem? If you've tried something and it didn't work, it would be useful to know for anyone trying to solve it themselves. Also, if this problem came up in a certain context (i.e. as an exercise in a textbook following a chapter on BLAH), then it may be helpful to a potential answerer to know what this context is. – Michael Albanese Feb 03 '13 at 01:54
  • Is it $\sqrt{2\pi}$ ?? – GEdgar Feb 03 '13 at 02:02
  • @GEdgar I dont know the answer :( – gauss115 Feb 03 '13 at 02:06
  • 1
    How about $4/3$. – GEdgar Feb 03 '13 at 02:08
  • 2
    Maybe the answers/methods in http://math.stackexchange.com/questions/160248/ will provide a hint. – GEdgar Feb 03 '13 at 02:16
  • @GEdgar : I try a large n on the software, I think the limit is 4/3. How did you get that? :) – Ryan Feb 03 '13 at 04:36
  • It should be doable with the sum of $n$ iid Poisson RVs with parameter 1, but I couldn't solve it this way. – Alex Feb 03 '13 at 21:37

1 Answers1

5

Ramanujan proved (in S. RAMANUJAN, J. Ind. Math. Soc. 3 (1911), 128; ibid. 4 (1911), 151-152; Collected Papers (Chelsea, New York; 1962), 323-324) that

$$e^n/2 = \sum_{k=0}^{n-1} n^k/k! + (n^n/n!) r(n)$$

where, for large $n$, $r(n) \approx 1/3 + 4/(135n) + O(1/n^2)$.

I found this in http://journals.cambridge.org/download.php?file=%2FPEM%2FPEM2_24_03%2FS0013091500016503a.pdf&code=fd828d6902ca6a380244640216120c97 via a Google search for "ramanujan exponential series" - I read Ramanujan's collected works many years ago and remembered this result, but not its details.

This says that

$\begin{align} \sum_{k=0}^{n} n^k/k! &\approx e^n/2 + n^n/n! -(n^n/n!)r(n) \\ &= e^n/2 + (n^n/n!)(1-r(n)) \end{align} $

Also,

$\begin{align} \sum_{k=n+1}^{\infty} n^k/k! &= e^n - \sum_{k=0}^{n} n^k/k!\\ &= e^n - (e^n/2 + (n^n/n!)(1-r(n)))\\ &= e^n/2 - (n^n/n!)(1-r(n)) \end{align} $

so

$\begin{align} \sum_{k=0}^{n} n^k/k! - \sum_{k=n+1}^{\infty} n^k/k! &\approx (e^n/2 + (n^n/n!)(1-r(n))) - (e^n/2 - (n^n/n!)(1-r(n)))\\ &= (n^n/n!)(2-2r(n)) \end{align} $

and

$\begin{align} (n!/n^n)\left(\sum_{k=0}^{n} n^k/k! - \sum_{k=n+1}^{\infty} n^k/k! \right) &\approx 2-2r(n) \\ &\to 2-2/3 \\ = 4/3 \end{align} $.

GEdgar is right! Good guess:)

marty cohen
  • 107,799