Let $\alpha = \sqrt{\sqrt{2}+\root 4 \of 2}$, $\beta =\sqrt{\sqrt{2}- \root 4 \of 2}$, $\gamma = \sqrt{-\sqrt{2}+i\root 4 \of 2}$ and $\delta = \overline{\gamma}=\sqrt{-\sqrt{2}-i\root 4 \of 2}$.
Let $L=\mathbb{Q}(\alpha , \beta , \gamma , \delta)$.
The goal is to find $[L:\mathbb{Q}\textbf{]}$.
A few facts I got so far:
- The minimal polynomial of $\alpha ,\beta ,\gamma$ and $\delta$ over $\mathbb{Q}$ is $f(t)=t^8-4t^4-8t^2+2$ and $[\mathbb{Q(\alpha )}:\mathbb{Q}\textbf{]}=[\mathbb{Q(\beta )}:\mathbb{Q}\textbf{]}=[\mathbb{Q(\gamma )}:\mathbb{Q}\textbf{]}=[\mathbb{Q(\delta )}:\mathbb{Q}\textbf{]}=8$.
- The extension $L:\mathbb{Q}$ is normal.
- We have $\mathbb{Q}(\alpha ^2)=\mathbb{Q}(\beta ^2)=\mathbb{Q}(\root 4 \of 2)$ and $\alpha \not \in \mathbb{Q}(\alpha ^2)$.
- The extension $\mathbb{Q}(\alpha):\mathbb{Q}(\alpha ^2)$ is normal and there exists $\chi \in \text{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q}(\alpha ^2))$ such that $\displaystyle \chi (\alpha)=-\alpha$.
- We also have the following equalities: $\alpha \beta =\sqrt{2-\sqrt{2}}$, $\gamma \delta=\sqrt{2+\sqrt{2}}$ and $\alpha \beta \gamma \delta = \sqrt{2}$.
- The extension $\mathbb{Q}(\alpha \beta):\mathbb{Q}$ is normal and $[\mathbb{Q}(\alpha \beta):\mathbb{Q}\textbf{]}=4$. Furthermore $\mathbb{Q}(\alpha \beta)\neq \mathbb{Q}(\alpha ^2)$.
- It is true that $\beta \not \in \mathbb{Q}(\alpha)$, therefore $[\mathbb{Q}(\alpha ,\beta):\mathbb{Q}\textbf{]}=16$. Also $\gamma \not \in \mathbb{Q}(\alpha ,\beta)$ and $L=\mathbb{Q}(\alpha ,\beta ,\gamma)$.
- The extension $\mathbb{Q}(\alpha ,\beta):\mathbb{Q}(\sqrt{2})$ is normal and $[\mathbb{Q}(\alpha ,\beta):\mathbb{Q}(\sqrt{2})\textbf{]}=8$. There exist $\varphi \in \text{Gal}(\mathbb{Q}(\alpha ,\beta)/\mathbb{Q}(\beta))$ such that $\varphi (\alpha)=-\alpha$ and $\psi \in \text{Gal}(\mathbb{Q}(\alpha ,\beta)/\mathbb{Q}(\alpha))$ such that $\psi (\beta)=-\beta$. Also $\vert \varphi \vert$=$\vert \psi \vert=2$.
- There exists $\rho \in \text{Gal}(\mathbb{Q}(\alpha ,\beta)/\mathbb{Q}(\sqrt{2})$ such that $\rho (\alpha)=\beta$. Furthermore $\vert \rho \vert=4$.
- It is true that $\varphi , \psi \in \text{Gal}(\mathbb{Q}(\alpha ,\beta)/\mathbb{Q}(\sqrt{2}))$, $(\varphi \circ \psi)(\alpha)=\beta$, $(\varphi \circ \psi)(\beta)=\alpha$, $\vert \varphi \circ \rho \vert=2$ and $(\varphi \circ \rho)(\alpha \beta)=\alpha \beta \wedge (\varphi \circ \rho)(\alpha +\beta)=\alpha+\beta$.
- Finally $[L:\mathbb{Q}(\alpha ,\beta)\textbf{]}\in \{2,4\}$.
Can anyone find the exact value of $[L:\mathbb{Q}(\alpha ,\beta)\textbf{]}$?
If there's a way to find $[L:\mathbb{Q}\textbf{]}$ using a computer, I'd like to know the answer just for the sake of curiosity and peace of mind, but I'm still looking for a proof.
Appreciated.