If we have, \begin{equation} Z=\begin{bmatrix} \dfrac{\partial A}{\partial x} & \dfrac{\partial A}{\partial y}\\ \dfrac{\partial B}{\partial x} & \dfrac{\partial B}{\partial y} \end{bmatrix} \end{equation}
Where $ \dfrac{\partial A}{\partial x}, \dfrac{\partial A}{\partial y}, \dfrac{\partial B}{\partial x}$ and $\dfrac{\partial B}{\partial y}$ are matrices.
Now, in order to find $\dfrac{\partial x}{\partial A}$, should I invert $Z$ and get $\dfrac{\partial x}{\partial A}$ from the inverse (if yes please tell me how, I couldn't figure it out)? or I can simply inverse the submatrix $\dfrac{\partial x}{\partial A}=\left(\dfrac{\partial A}{\partial x}\right)^{-1}$?