Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in a Banach space $X$. The series $\sum_{n \in \mathbb{N}} x_n$ converges in $X$ if $\sum_{n \in \mathbb{N}} \|x_n\| < \infty$.
Is this statement true?
Since $X$ is a Banach space, if we prove the series $\sum_{n \in \mathbb{N}} x_n$ a Cauchy sequence then it converges. That is, for any $m \ge n > N$, there is $\|\sum_{m \in \mathbb{N}} x_m - \sum_{n \in \mathbb{N}} x_n\| = \|\sum_{k = n}^m x_k\| < \epsilon$ for any $\epsilon > 0$. But how can this be derived from the boundedness of $\sum_{n \in \mathbb{N}} \|x_n\|$?