Given integers b,n, what are integer C,$a_i$ who solves $a_1^2+a_2^2+....+a_n^2 = b.C^2$ ??
Example for n=4 , b=7-> $a_1^2+a_2^2+a_3^2+a_4^2 = 7C^2$
or
for n=3, b=1 -> $a_1^2+a_2^2+a_3^2 = C^2$
Please if any reference, book, author I will appreciate thanks
Example for n=5, b=6 this sequence $1.a_1^2+2.a_2^2+3.a_3^2+4.a_4^2+5.a_5^2 = 6.C^2$
one solution (among infinite other) is $1.77^2+2.61^2+3.67^2+4.(2)^2+5.(4)^2=6.67^2$ I am writing development for this method soon will post here
– Miguel Velilla Sep 23 '18 at 21:36