I need to show that if $H$ and $K$ are subgroups of $G$, then $H \cap K$ is also a subgroup.
My working:
$I \in H, I \in K$, $I$ is unique $\implies I \in H \cap K$, so identity present in $H \cap K$
$h_c \in H \implies h_c^{-1}\in H$ and
$h_c \in K \implies h_c^{-1}\in K$ so
$h_c \in H, h_c \in K \implies h_c \in H \cap K$ and
$h_c \in H, h_c \in K \implies h_c^{-1} \in H \cap K$
so inverse of every element present in $H \cap K$.
$h_c, k_c \in H \implies h_ck_c \in H$
$h_c, k_c \in K \implies h_ck_c \in K$
$h_c, k_c \in H, h_c, k_c \in K \implies h_c, k_c \in H \cap K$
$h_c k_c \in H, h_c k_c \in K \implies h_c k_c \in H \cap K$
so $H \cap K$ is closed.
Is this correct? Do I need to say anything else?