Proposition. For an $n$-by-$n$ real matrix $A$, if the matrix $A+A^\top$ is stable, then $A$ is stable.
Let $B:=-A$. Write $S:=B+B^\top=-(A+A^\top)$. Then, $A+A^\top$ is stable if and only if $S$ is positive-definite. We suppose that $A+A^\top$ is stable.
For a nonzero $v\in\mathbb{R}^n$, we have
$$2\,\left(v^\top\,B\,v\right)=v^\top\,B\,v+v^\top\,B\,v=v^\top \,B^\top \,v+v^\top\,B\,v=v^\top\,S\,v>0\,.$$
That is, $v^\top\,B\,v>0$ for every nonzero $v\in\mathbb{R}^n$. Consequently, $B$ is a real positive-definite matrix (in a broader sense). From this link, the real part of every eigenvalue of $B$ is positive. Therefore, the real part of every eigenvalue of $A=-B$ is negative. This shows that $A$ is stable.
The converse does not hold. As in achille hui's example (see the link), the eigenvalues of
$$A:=-\begin{bmatrix}3&7\\1&3\end{bmatrix}$$
are $-3+\sqrt{7}<0$ and $-3-\sqrt{7}<0$. Thus, $A$ is stable. However, the eigenvalues of
$$A+A^\top=-\begin{bmatrix}6&8\\8&6\end{bmatrix}$$
are $2>0$ and $-14<0$, whence $A+A^\top$ is not stable.