Let $f:\mathbb{C} \rightarrow \mathbb{R}$ be defined by $$f(z)=|z^3-z+2|\,.$$ What is the maximum value on the unit circle $|z|=1$ ?
My approach is as follows:
$z=e^{i\theta}$ as it is mentioned that the point lie on the unit circle.
$$f(z)=|1+\cos3\theta+i\sin3\theta +1-\cos\theta-i\sin\theta|\,.$$
Therefore, $f(z)=|t|$, where
$$t=2\cos^2\frac{3\theta}{2}+2i\sin\frac{3\theta}{2}\cos\frac{3\theta}{2}+ 2\sin^2 \frac{\theta}{2}-2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}\,.$$ $$t=2\cos\frac{3\theta}{2}\left(\cos\frac{3\theta}{2}+i\sin\frac{3\theta}{2}\right)-2i\sin \frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)\,.$$
$$t=2\cos\frac{3\theta}{2}\,e^\frac{i3\theta}{2}- 2i\sin \frac{\theta}{2}\,e^\frac{i\theta}{2}\,.$$
I am not able to proceed from here.
Note: Please don't mark it as duplicate because the question in the website is same but my approach is different.