I am trying to solve the following problem:
Let $f(x) = x^2$ and let $\epsilon > 0$ be given.
Find a $\delta$ so that $|x - 2| \leq \delta \implies |f(x) - 4| \leq \epsilon$.
I've rewritten the $\epsilon \text{-} \delta$ condition thusly,
\begin{align*} |f(x) - 4| = |x^2 - 4| = |(x-2)(x+2)| = |x - 2||x + 2| &\leq \epsilon\\ |x - 2| &\leq \frac{\epsilon}{|x+2|}. \end{align*}
Therefore, choose $\delta \leq \frac{\epsilon}{|x+2|}$ (which is positive since $|x+2|$ is positive).
Then we have \begin{align*} |x-2| \leq \delta \leq \frac{\epsilon}{|x+2|} \implies |f(x) - 4| \leq \epsilon. \end{align*}
Is this right? Are you allowed to define $\delta$ in terms of $x$?