Note that if you use Weierstrass substitution you get:
$$I=2\int_0^1\frac{(1+t^2)(\ln(1+2t-t^2)-\ln(1+t^2))}{2t(1-t^2)}dt$$
This may work
EDIT
note:
$$\sin(x)+\cos(x)=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)$$
also, we know the rule:
$$\int_a^bf(x)dx=\int_a^bf(a+b-x)dx$$
but when applied to the original integral it does not help us.
Writing our integral as:
$$I=\int_0^{\pi/2}\frac{\ln\left(\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\right)}{\sin(x)\cos(x)}dx$$
we can now apply the substitution:
$$u=x+\frac{\pi}{4}$$
to obtain:
$$I=2\int\limits_{\pi/4}^{3\pi/4}\frac{\ln\left(\sqrt{2}\sin(u)\right)}{(\sin u+\cos u)(\sin u-\cos u)}du=2\int\limits_{\pi/4}^{3\pi/4}\frac{\ln\left(\sqrt{2}\sin(u)\right)}{\sin^2(u)-\cos^2(u)}du$$
now we would like to substitute with the $\sqrt{2}\sin(u)$ but this doesn't work with the limits. So we are going to try using the substitution $v=\sqrt{2}\sin(u)$ and split the integral up into two parts.
$$I_1=2\int\limits_{\pi/4}^{\pi/2}\frac{\ln(\sqrt{2}\sin(u)}{\sin^2(u)-\cos^2(u)}du=\sqrt{2}\int_1^\sqrt{2}\frac{\ln(v)}{\frac{v^2}{2}-\frac{2-v^2}{2}}dv=\sqrt{2}\int_1^\sqrt{2}\frac{\ln(v)}{v^2-1}dv$$$$
=\sqrt{2}\int_1^\sqrt{2}\frac{\ln(v)}{2(v-1)}-\frac{\ln(v)}{2(v+1)}dv$$
and the same can be done for the second part.