What is the solution for
$$A^{-1}(n) = (\mathbf{1}_{n} - I_{n})^{-1},$$ where $\mathbf{1}_{n}$ is the $n\times n$ matrix of ones and $I_{n}$ is the $n\times n$ identity matrix.
Numerical Examples Suggest
$$ A^{-1}(n) = \begin{bmatrix} \frac{-n+2}{n-1} & \frac{1}{n-1} & \frac{1}{n-1} & ... \\ \frac{1}{n-1} & \frac{-n+2}{n-1} & \frac{1}{n-1} & ... \\ \frac{1}{n-1} & \frac{1}{n-1} & \frac{-n+2}{n-1} & ... \\ \vdots & \vdots & \vdots & \frac{-n+2}{n-1} \\ \end{bmatrix} $$
For similar questions on determinants, see
How to calculate the determinant of all-ones matrix minus the identity?
Why is the determinant of the all one matrix minus the identity matrix n-1?
How to calculate the determinant of all-ones matrix minus the identity?
Determinant of a matrix with diagonal entries $a$ and off-diagonal entries $b$