Let $\tau$ be lower limit topology on $\mathbb R.$ Then $(X,\tau)$ is not second countable.
Suppose on the contrary there exists a countable basis for $(X,\tau)$. Let $\mathscr B=\{B_1,...,\}$ be the basis. Any non-empty open set is the union of elements of $\mathscr B.$ Where will I get a contradiction? How do I proceed the proof?