Finding sum of
$\displaystyle 1+\frac{1\cdot 3}{6}+\frac{1\cdot 3 \cdot 5}{6\cdot 8}+\frac{1\cdot 3 \cdot 5 \cdot 7}{6 \cdot 8 \cdot 10}+\cdots \cdots$
Try: We can write sum as
$$ \mathcal{S} = 4\bigg[\frac{1}{4}+\frac{1\cdot 3}{4\cdot 6}+\frac{1\cdot 3 \cdot 5}{4\cdot 6 \cdot 8}+\cdots \cdots \cdots \bigg]$$
Now Let $$a_{n} = \prod^{n}_{k=1}(2k-1)=2^n\prod^{n}_{k=1}\bigg(k-\frac{1}{2}\bigg)$$
and $$b_{n} = 2^{-1}\prod^{n}_{k=1}(2k)=2^{n-1}\prod^{n}_{k=1}k$$
So $$\frac{a_{n}}{b_{n}} = 2\cdot \Gamma\left(n+\frac{1}{2}\right)\cdot \frac{1}{\Gamma\left(\frac{1}{2}\right)\cdot \Gamma(n+1)}$$
Above I have used $$\Gamma(x+n) = (x+n-1)(x+n-2)\cdot \cdots x \cdots \Gamma(n).$$
So $$\frac{a_{n}}{b_{n}} = 2\cdot \frac{\Gamma\left(n+\frac{1}{2}\right)\cdot \Gamma\left(\frac{1}{2}\right)}{\pi \cdot \Gamma(n+1)}= \frac{2}{\pi}\int^{1}_{0}x^{n-\frac{1}{2}}(1-x)^{-\frac{1}{2}}dx$$
So our sum is $$\mathcal{S} = \frac{8}{\pi} \sum^{\infty}_{n=1}\int^{1}_{0}x^n \cdot \frac{1}{\sqrt{x-x^2}}dx$$
So $$\mathcal{S} = \frac{8}{\pi}\int^{1}_{0}\frac{x}{(1-x)\sqrt{1-x^2}}dx$$
Put $x=\sin^2 \theta$ and $dx = 2 \sin \theta \cos \theta d\theta$ and changing limits
So we have $$\mathcal{S} = \frac{16}{\pi}\int^{\frac{\pi}{2}}_{0}(\sec^2 \theta -1)d \theta = $$
I did not understand where i am wrong.
and answer is $4$
Could some help me to explain it , thanks