1

This guy solves $x^y=y^x$ by introducing a parameter $t$:

$$x=t^\frac{1}{t-1}$$

$$y=t^\frac{t}{t-1}$$

Fine, but my first instinct was to use the change-of-base formula:

$$\frac{\ln{y}}{\ln{x}} = \frac{\ln{x}}{\ln{y}}$$

$$(\ln{y})^2 = (\ln{x})^2$$

$$\ln{y} = \pm\ln{x}$$

given $y\ne x$,

$$\ln{y} = -\ln{x}$$

Why is this wrong?

spraff
  • 1,587

1 Answers1

1

$$x^y = y^x$$

does not imply

$${\ln(y)\over \ln(x)} = {\ln(x)\over \ln(y)} $$

but instead

$$y\ln(x) = x\ln(y)$$ or $${\ln(x)\over \ln(y)} = {x\over y}$$

David P
  • 12,320