Problem
Assume that $\alpha>0,c>1.$ Prove $$\lim_{n \to \infty}\frac{n^{\alpha}}{c^n}=0.$$
Proof
Denote $b=c^{\frac{1}{\alpha}}$. Then $$\frac{n^{\alpha}}{c^n}=\frac{n^{\alpha}}{(b^{\alpha})^n}=\left(\frac{n}{b^n}\right)^{\alpha}.$$
Notice that $b=c^{\frac{1}{\alpha}}>1^{\frac{1}{\alpha}}=1$. We may assume that $b=1+h(h>0)$. Hence $$\forall n \geq 2:b^n=(1+h)^n=1+nh+\frac{n(n-1)}{2}h^2+\cdots \geq \frac{n(n-1)}{2}h^2,$$
Thus $$0 \leq \frac{n^{\alpha}}{c^n}=\left(\frac{n}{b^n}\right)^{\alpha}\leq \left(\frac{2}{(n-1)h^2}\right)^{\alpha} \to 0 (n \to \infty).$$
By the squeeze theorem, we may obtain $$\lim_{n \to \infty}\frac{n^{\alpha}}{c^n}=0.$$