Write $\,\begin{align}(x,y)&:=\gcd(x,y)\\ [x,y]\,&:={\rm lcm}(x,y)\end{align}.\ $ Cancel $\,6\,$ from the lcm, then apply Theorem $\rm\color{#c00}T\,$ & $\,\rm lcm * gcd\,$ law
$$[4M,21N]/6\, =\, [4m,\,21n]\, \overset{\large\color{#c00}{\rm T}}=\, [n,4]\,[m,21]\,={\bbox[6px,border:1px solid orange]{ \dfrac{84\,n\,m}{(n,4)\,(m,21)}\,,}\quad \begin{align} &\, \ n,m := N/6, M/6 \\ &(n,m) = 1\end{align}}\ \ \ $$
Theorem $\, \color{#c00}{\rm T}\,\quad (a,A) = 1 = (b,B)\ \Rightarrow\ [ab,AB]\color{#0a0} = [a,B]\,[A,b]$
Proof $\ 1.\,\ \ [a,B]\,[A,b] = [ab,AB,\color{#c00}{aA},bB] = [ab,AB,\color{#0a0}{a,A},b,B] = [ab,AB]\ $ by $\ \smash[t]{\overbrace{\color{#c00}{aA} = [\color{#0a0}{a,A}]}^{\large (a,A)\,=\,1}}$
Proof $\ 2.\ $ Wlog we may reduce to case $\,(a,B)=1=(A,b)\,$ by cancelling $(a,B)(A,b)$ from both sides. Then all lcm arg's are coprime so lcm = product so it becomses $\,ab\cdot AB = a\cdot B\,(A\cdot b)$.