$f(x)=|x+\frac{\pi}{2}|-2|x|+|x-\frac{\pi}{2}|$
After using Fourier transformation I get
$a_0 = \frac{\pi}{2}$
$a_n = \frac{8}{\pi n^2}sin^2(\frac{n\pi}{4})$
$f(x)= \frac{a_0}{2} + \sum_{n=1} ^{\infty} a_n*cos(nx)$
After this of I substitute n=2k and k=2h+1 I can get values but not for the sum in question. Is it even possible to solve this?