5

Problem

Prove $$\lim_{n \to \infty}\frac{a^n}{n!}=0~~~(a>0).$$

Proof

Denote $x_n=\dfrac{a^n}{n!}$ where $n=1,2,\cdots.$Then $$\frac{x_{n+1}}{x_n}=\frac{a^{n+1}}{(n+1)!}\cdot \frac{n!}{a^n}=\frac{a}{n+1}\to 0~~~(n \to \infty)$$which implies the series $\sum\limits_{n=1}^{\infty} x_n$ is convergent, by the ratio test. It follows that $$\lim_{n \to \infty}x_n=0,$$which is just the necessary condition for the positive convergent series.

mengdie1982
  • 13,840
  • 1
  • 14
  • 39

5 Answers5

7

Yes it is correct, note also that the ratio test works for positive sequences and we don't need to consider the series, that is

$$\lim_{n\to \infty}\frac{x_{n+1}}{x_n}=\begin{cases}L<1 \implies x_n\to 0\\L>1 \implies x_n\to \infty\\L=1 \quad \text{we can't conclude}\end{cases}$$


As an alternative, just to play around, we can use that

$$\frac{a^n}{n!}=e^{n\log a-\sum_{k=1}^{n} \log k} \to 0$$

indeed by integral approximation

$$\sum_{k=1}^{n} \log k \sim \int_1^n \log x dx =n\log n-n+1$$

and therefore

$$n\log a-\sum_{k=1}^{n} \log k\sim -n\log n+n(1+\log a)\to -\infty$$

user
  • 154,566
1

Notice that

$$\sum_{n=0}^\infty \frac{a^n}{n!} = \exp a \in \mathbb{R}$$

so the series in particular converges and $\frac{a^n}{n!} \to 0$.

mechanodroid
  • 46,490
1

Yes,we may give another proof by the squeeze theorem.

If $0<a<1.$ Then

$$0<\frac{a^n}{n!}=\frac{a}{1}\cdot\frac{a}{2}\cdots\frac{a}{n}<\frac{a}{n}\to 0~~~(n \to \infty);\tag1$$

If $a \geq 1.$ Then there exists an integer $k \geq 1$ such that $k \leq a < k+1.$ Thus $$0<\frac{a^n}{n!}=\frac{a}{1}\cdot\frac{a}{2}\cdots\frac{a}{k}\cdot\frac{a}{k+1}\cdots\frac{a}{n}<\frac{a^k}{k!}\cdot\frac{a}{n}\to 0~~~(n \to \infty).\tag2$$

By $(1)$ and $(2)$, we are done!

mengdie1982
  • 13,840
  • 1
  • 14
  • 39
0

we can force a to lie between (k, k+1) and apply sandwich theorem.

maveric
  • 2,168
0

Besides, we may also use the monotonic bounded principle.

Notice that $$x_{n+1}=x_n\cdot \frac{a}{n+1},\tag 1$$which implies that $\{x_n\}$ is decreasing when $n>a-1$. And $\{x_n\}$ has a lower bound, for $x_n>0$. Thus, $\{x_n\}$ has a limit, which can be denoted as $x$. Therefore, taking the limits of both sides of $(1)$, we obtain an equation $$x=x\cdot 0,$$which gives $x=0$. This is the limit what we want.

mengdie1982
  • 13,840
  • 1
  • 14
  • 39