Problem
Prove $$\lim_{n \to \infty}\frac{a^n}{n!}=0~~~(a>0).$$
Proof
Denote $x_n=\dfrac{a^n}{n!}$ where $n=1,2,\cdots.$Then $$\frac{x_{n+1}}{x_n}=\frac{a^{n+1}}{(n+1)!}\cdot \frac{n!}{a^n}=\frac{a}{n+1}\to 0~~~(n \to \infty)$$which implies the series $\sum\limits_{n=1}^{\infty} x_n$ is convergent, by the ratio test. It follows that $$\lim_{n \to \infty}x_n=0,$$which is just the necessary condition for the positive convergent series.