Taking limits on both sides of the preceding displayed equation for the integral $\oint_{C_N}(\pi\cot\pi z)f(z)dz$
This means taking the limit $N\to\infty$ on both sides of
$$
\begin{align}
\oint_{C_N}f(z)dz
&=2\pi i\sum\text{Res $(\pi\cot\pi z)f(z)$ at $-N,\cdots,+N$} \\
&~~~~+2\pi i\sum\text{Res $(\pi\cot\pi z)f(z)$ at singularities of $f$} \\
\end{align}
$$
which is
$$
\begin{align}
\lim_{N\to\infty}\oint_{C_N}f(z)dz
&=\lim_{N\to\infty}2\pi i\sum\text{Res $(\pi\cot\pi z)f(z)$ at $-N,\cdots,+N$} \\
&~~~~+\lim_{N\to\infty}2\pi i\sum\text{Res $(\pi\cot\pi z)f(z)$ at singularities of $f$} \\
\end{align}
$$
and using the fact that $\oint_{C_N}(\pi\cot\pi z)f(z)dz\to0$ as $N\to\infty$,
Therefore,
$$
\begin{align}
0
&=\lim_{N\to\infty}2\pi i\sum\text{Res $(\pi\cot\pi z)f(z)$ at $-N,\cdots,+N$} \\
&~~~~+\lim_{N\to\infty}2\pi i\sum\text{Res $(\pi\cot\pi z)f(z)$ at singularities of $f$} \qquad{(*)}\\
\end{align}
$$
Since for an integer $k$ $$\text{Res $(\pi\cot\pi z)f(z)$ at $k$}=f(k)$$
we can rewrite $(*)$ as
$$
\begin{align}
0
&=\lim_{N\to\infty}2\pi i\sum_{k=-N}^N f(k) \\
&~~~~+\lim_{N\to\infty}2\pi i\sum\text{Res $(\pi\cot\pi z)f(z)$ at singularities of $f$} \\
\end{align}
$$
Furthermore, recognizing that the second sum does not depend on $N$ for large enough $N$, we have
$$\begin{align}
0
&=\lim_{N\to\infty}2\pi i\sum_{k=-N}^N f(k)
+2\pi i\sum\text{Res $(\pi\cot\pi z)f(z)$ at singularities of $f$} \\
0
&=\lim_{N\to\infty}\sum_{k=-N}^N f(k)
+\sum\text{Res $(\pi\cot\pi z)f(z)$ at singularities of $f$} \\
\end{align}
$$
$$
\color{red}{
\lim_{N\to\infty}\sum_{k=-N}^N f(k)
=-\sum\text{Res $(\pi\cot\pi z)f(z)$ at singularities of $f$}}
$$