Check out: Taxi-cab numbers: sums of 2 cubes in more than 1 way
There are a couple of code snippets there for you to work with.
The sequence continues as follows:
$1729 = (1^3 + 12^3)$ or $(9^3 + 10^3)$
$4104 = (2^3 + 16^3)$ or $(9^3 + 15^3)$
$13832 = (2^3 + 24^3)$ or $(18^3 + 20^3)$
$20683 = (10^3 + 27^3)$ or $(19^3 + 24^3)$
$32832 = (4^3 + 32^3)$ or $(18^3 + 30^3)$
$39312 = (2^3 + 34^3)$ or $(15^3 + 33^3)$
$40033 = (9^3 + 34^3)$ or $(16^3 + 33^3)$
$46683 = (3^3 + 36^3)$ or $(27^3 + 30^3)$
$64232 = (17^3 + 39^3)$ or $(26^3 + 36^3)$
$65728 = (12^3 + 40^3)$ or $(31^3 + 33^3)$
After that you have:
$110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656$, etc.
You might also be interested in exploring:
$\bullet$ Diophantine Equation--3rd Powers
$\bullet$ Cubic Numbers
$\bullet$ Taxi Numbers in JavaScript
Regards