Let $\lim\limits_{n\to\infty}a_{n+1}-a_{n}=\alpha$. Show that $\lim\limits_{n\to\infty} \frac{a_n}{n}=\alpha$.
Since $\lim\limits_{n\to\infty}a_{n+1}-a_{n}=\alpha$, we have that for all $\epsilon>0$ there exists $N\in\mathbb{N}$ such that $$|(a_{n+1}-a_n) - \alpha| < \epsilon \quad \forall n>N.$$ We wish to show that for all $\epsilon>0$ there exists $M\in\mathbb{N}$ such that $$\left|\frac{a_n}{n} - \alpha \right| < \epsilon \quad \forall n>M.$$ So, \begin{align*} \left|\frac{a_n}{n} - \alpha \right| &= \left|\frac{a_n}{n} - \frac{a_{n+1}}{n} + \frac{a_{n+1}}{n} - \alpha \right| \\ &= \left| \frac{1}{n}(a_n - a_{n+1} - \alpha) + \frac{a_{n+1}}{n} + \sum_{j=1}^{n+1} \frac{\alpha}{n} \right| \\ \end{align*} I tried continuing with this pattern, but I did not get anywhere.