Let $$a \in H^1(\mathbb{RP}^5,\mathbb{Z}_2)=\mathbb{Z}_2,$$
- When $a' \in H^1(\mathbb{RP}^5,\mathbb{Z}_2)=\mathbb{Z}_2$ is a nontrivial generator, the Poincaré dual (4-manifold generator) PD$(a')$ of the nontrivial class $H^1(\mathbb{RP}^5,\mathbb{Z}_2)$ is $\mathbb{RP}^4$ in $\mathbb{RP}^5$ (Yes?).
- When $a \in H^1(\mathbb{RP}^5,\mathbb{Z}_2)=\mathbb{Z}_2$, what is the Poincaré dual (4-manifold generator) PD$(a)$ of the trivial class $H^1(\mathbb{RP}^5,\mathbb{Z}_2)$ in $\mathbb{RP}^5$? Can it be $\mathbb{CP}^2$?