I want to find the following limit:
$$\lim_{x\rightarrow -\infty}{e^{\frac {1}{2-x}}\cdot\frac{x^2+2x-1}{x-2}}-x$$
This is what I do. I change the variable $t=-x$ and I have the following limit:
$$\lim_{t\rightarrow +\infty}{e^{\frac {1}{2+t}}\cdot{\frac{t^2-2t-1}{-t-2}}+t}=\lim_{t\rightarrow+\infty}{h(x)}$$
We have $e^{\frac{1}{2+t}}\rightarrow1$ for $t\rightarrow+\infty$
Therefore I think (this is the passage I'm less sure about)
$$h(x)\sim \frac{t^2-2t-1}{-t-2}+t=\frac{t^2-2t-1+t(-t-2)}{-t-2}=\frac{t^2-2t-1-t^2-2t}{-t-2}=\frac{-4t-1}{-t-2}\sim{\frac {-4t}{-t}}\rightarrow4$$
The solution should actually be $3$. Any hints on what I'm doing wrong?