We know,
$$\lim_{n\to\infty}\frac{1}{n}\sum_{r=1}^nf\left(\frac rn\right)=\int_0^1f(x)dx$$
Now,we have $\int_0^1\frac{\log( 1+x)}{x}dx$ So,$f(x)=\frac{\log (1+x)}{x}$.So we find $f(r/n)$ by replacing $x$ with $r/n$. Then putting in the summation form on LHS.
Converting to summation, $$\lim_{n\to\infty}\sum_{r=1}^n\frac{\log\left(1+\frac{r}{n}\right)}{r}$$
Now this should evaluate to $1-\frac{1}{2^2}+\frac1{3^3}-\cdots$.How do I carry on the simplification?
Thanks for any help!