I need to find the distribution of $Y=X_1+X_2$ where both $X_1$ and $X_2$ are normally distributed with $(\mu,\sigma^2)$.
So I'm looking for $f_y(y)=P(Y=y)$$=P(X_1+X_2=Y)$$=P(X_1=x_1)P(X_2=Y-x_1)$$$=\int_{x=-\infty}^{y} \frac1{\sqrt{2\pi}\sigma} e^{\frac{(x_1-\mu)^2}{2\sigma^2}} \frac1{\sqrt{2\pi}\sigma} e^{\frac{(y-x_1-\mu)^2}{2\sigma^2}} dx$$ $$=\int_{x=-\infty}^{y} \frac1{2\pi\sigma^2} e^{\frac{(x_1-\mu)^2+(y-x_1-\mu)^2}{2\sigma^2}} dx$$$$= \frac1{2\pi\sigma^2} \int_{x=-\infty}^{y} e^{\frac{(x_1-\mu)^2+(y-x_1-\mu)^2}{2\sigma^2}} dx $$
which is about where I get stuck. I tried expanding the brackets and removing any terms from the intergral that don't depend on x and what I get is:
$$= \frac1{2\pi\sigma^2} e^{\frac{y^2+2\mu^2-2y\mu}{2\sigma^2}}\int_{x=-\infty}^{y} e^{\frac{x_1(x_1-y)}{\sigma^2}} dx $$
I've been looking for a way to use u substitution on the exponent term $\frac{x_1(x_1-y)}{\sigma^2}$ but I can't come up with anything that works. Am I missing something obvious? Any nudges in the right direction are welcomed.