Is there any known proof of the following conjectures:
$b^{n}-1$, $n>1$, is prime only if $b=2$ and $n$ is prime.
$b^{n}+1$, $n>1$, is prime only if $b\equiv0\pmod2$ and $n$ is a power of $2$.
All possible $b^n-1$ with $0<b<15$, $1<n<15$
1^2-1 0 2^2-1 3 | PRIME
3^2-1 8 4^2-1 15
5^2-1 24 6^2-1 35
7^2-1 48 8^2-1 63
9^2-1 80 10^2-1 99
11^2-1 120 12^2-1 143
13^2-1 168 14^2-1 195
1^3-1 0 2^3-1 7 | PRIME
3^3-1 26 4^3-1 63
5^3-1 124 6^3-1 215
7^3-1 342 8^3-1 511
9^3-1 728 10^3-1 999
11^3-1 1330 12^3-1 1727
13^3-1 2196 14^3-1 2743
1^4-1 0 2^4-1 15
3^4-1 80 4^4-1 255
5^4-1 624 6^4-1 1295
7^4-1 2400 8^4-1 4095
9^4-1 6560 10^4-1 9999
11^4-1 14640 12^4-1 20735
13^4-1 28560 14^4-1 38415
1^5-1 0 2^5-1 31 | PRIME
3^5-1 242 4^5-1 1023
5^5-1 3124 6^5-1 7775
7^5-1 16806 8^5-1 32767
9^5-1 59048 10^5-1 99999
11^5-1 161050 12^5-1 248831
13^5-1 371292 14^5-1 537823
1^6-1 0 2^6-1 63
3^6-1 728 4^6-1 4095
5^6-1 15624 6^6-1 46655
7^6-1 117648 8^6-1 262143
9^6-1 531440 10^6-1 999999
11^6-1 1771560 12^6-1 2985983
13^6-1 4826808 14^6-1 7529535
1^7-1 0 2^7-1 127 | PRIME
3^7-1 2186 4^7-1 16383
5^7-1 78124 6^7-1 279935
7^7-1 823542 8^7-1 2097151
9^7-1 4782968 10^7-1 9999999
11^7-1 19487170 12^7-1 35831807
13^7-1 62748516 14^7-1 105413503
1^8-1 0 2^8-1 255
3^8-1 6560 4^8-1 65535
5^8-1 390624 6^8-1 1679615
7^8-1 5764800 8^8-1 16777215
9^8-1 43046720 10^8-1 99999999
11^8-1 214358880 12^8-1 429981695
13^8-1 815730720 14^8-1 1475789055
1^9-1 0 2^9-1 511
3^9-1 19682 4^9-1 262143
5^9-1 1953124 6^9-1 10077695
7^9-1 40353606 8^9-1 134217727
9^9-1 387420488 10^9-1 999999999
11^9-1 2357947690 12^9-1 5159780351
13^9-1 10604499372 14^9-1 20661046783
1^10-1 0 2^10-1 1023
3^10-1 59048 4^10-1 1048575
5^10-1 9765624 6^10-1 60466175
7^10-1 282475248 8^10-1 1073741823
9^10-1 3486784400 10^10-1 9999999999
11^10-1 25937424600 12^10-1 61917364223
13^10-1 137858491848 14^10-1 289254654975
1^11-1 0 2^11-1 2047
3^11-1 177146 4^11-1 4194303
5^11-1 48828124 6^11-1 362797055
7^11-1 1977326742 8^11-1 8589934591
9^11-1 31381059608 10^11-1 99999999999
11^11-1 285311670610 12^11-1 743008370687
13^11-1 1792160394036 14^11-1 4049565169663
1^12-1 0 2^12-1 4095
3^12-1 531440 4^12-1 16777215
5^12-1 244140624 6^12-1 2176782335
7^12-1 13841287200 8^12-1 68719476735
9^12-1 282429536480 10^12-1 999999999999
11^12-1 3138428376720 12^12-1 8916100448255
13^12-1 23298085122480 14^12-1 56693912375295
1^13-1 0 2^13-1 8191 | PRIME
3^13-1 1594322 4^13-1 67108863
5^13-1 1220703124 6^13-1 13060694015
7^13-1 96889010406 8^13-1 549755813887
9^13-1 2541865828328 10^13-1 9999999999999
11^13-1 34522712143930 12^13-1 106993205379071
13^13-1 302875106592252 14^13-1 793714773254143
1^14-1 0 2^14-1 16383
3^14-1 4782968 4^14-1 268435455
5^14-1 6103515624 6^14-1 78364164095
7^14-1 678223072848 8^14-1 4398046511103
9^14-1 22876792454960 10^14-1 99999999999999
11^14-1 379749833583240 12^14-1 1283918464548863
13^14-1 3937376385699288 14^14-1 11112006825558015
I looked up Mersenne primes theorems and other related stuff but i did not find anything that would prove those statements...