Suppose the series with positive terms $\sum_{n=1}^{\infty} a_n$ converges. Let $r_n=\sum_{k=n}^{\infty}a_k$.
Prove or disprove that $\sum_{n=1}^{\infty}\frac{a_n}{r_n}$ diverges,
and prove or disprove that $\sum_{n=1}^{\infty}\frac{a_n}{\sqrt{r_n}}$ converges.