Given the function $f(x)=x-\frac{x^2}2$ and $a_1=1$, $a_n=f(a_{n-1})$. Find the asymptotic expansion of $a_n$ to the $O(1/n^3)$ term as $n\to\infty$.
Attempt (to the $O(1/n)$ term)
Step 1
$$a_n=o(1)$$
As $|f(x)|<x$, $x\in(0,1]$, $\lim\limits_{n\to\infty}a_n=0$.
Step 2
$$a_n=\frac 2n+o(\frac 1n)$$
This step is equivalent to finding the value of $\lim\limits_{n\to\infty}n a_n$.
$$\lim_{n\to\infty}n a_n=\lim_{n\to\infty}\frac n{\frac 1{a_n}}=\lim_{n\to\infty}\frac{n-(n-1)}{\frac 1{a_n}-\frac 1{a_{n-1}}}=\lim_{x\to0}\frac 1{\frac1{x-x^2/2}-\frac1x}=2$$
Step 3 & 4 (only a guess)
$$a_n=\frac 2n-\frac{2\ln n}{n^2}+o(\frac{\ln n}{n^2})$$ $$a_n=\frac 2n-\frac{2\ln n}{n^2}+\frac{\text{a constant}}{n^2}+o(\frac 1{n^2})$$
This is equivalent to finding the limit $\lim\limits_{n\to\infty}\frac{n^2}{\ln n}(a_n-\frac2n)$ and $\lim\limits_{n\to\infty}n^2(a_n-\frac2n+\frac{2\ln n}{n^2})$
I can't go further. I think the condition $a_n=1$ should be used well in Step 3.