Definition: A set $A$ is countable if it is finite or if there is a bijection $c: \mathbb N \to A$; otherwise it is uncountable.
Let $I_n = \{i\in\mathbb N\mid i \leq n\}$. Then $\prod\limits_{n \in \mathbb N}I_n$ is uncountable.
This question arose when I tried to prove the above theorem.
I found that there exists an injection $\begin {array}{l|rcl} f : & \mathbb N & \longrightarrow & \prod\limits_{n \in \mathbb N}I_n \\ & n & \longmapsto & f(n) \end{array}$
$f(n)$ is defined by $f(n)(i)=\begin{cases}i & \text{ if } i<n\\ n & \text{ if } i \ge n \end {cases}$
I'm not sure if there is a surjection from $\mathbb N$ onto $\prod\limits_{n \in \mathbb N}I_n$?